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ABSTRACT 

This paper reports on ixiQuarks; an environment of 
instruments and effects that is built on top of the audio 
programming language SuperCollider. The rationale of 
these instruments is to explore alternative ways of 
designing musical interaction in screen-based software, 
and investigate how semiotics in interface design affects 
the musical output. The ixiQuarks are part of external 
libraries available to SuperCollider through the Quarks 
system. They are software instruments based on a non-
realist design ideology that rejects the simulation of 
acoustic instruments or music hardware and focuses on 
experimentation at the level of musical interaction. In 
this environment we try to merge the graphical with the 
textual in the same instruments, allowing the user to 
reprogram and change parts of them in runtime. After a 
short introduction to SuperCollider and the Quark 
system, we will describe the ixiQuarks and the 
philosophical basis of their design. We conclude by 
looking at how they can be seen as epistemic tools that 
influence the musician in a complex hermeneutic circle 
of interpretation and signification. 

1. INTRODUCTION 

The question of affordances and constraints in musical 
software [8] is highly interesting as it is inevitably 
concerned with aesthetics and musicology. As all 
musicians who have worked with digital software know, 
the software itself suggests certain work methods, 
outlining a methodology to be followed. Often this 
means that the musicians have to change their natural 
ways of composing or playing and subscribe to work 
patterns that were defined by the designers of the 
software [10]. Musical software comes in various forms 
and includes both production and performance tools. The 
difference of such software compared to a word editor, a 
browser or a mail program is that the interaction design 
of the software itself has much stronger aesthetic 
implications for the user. Software is never neutral in its 
expressive scope and the more refined it is, the more it 
constrains. 
 In order to escape from the expressive constraints 
of commercial or closed source software, musicians are 
increasingly making use of free and open source 
programming environments such as SuperCollider, 
ChucK, Pure Data and other similar patching 
environments that allow for either textual or graphical 
programming. The word “free” above connotes not only 
free as in “free speech”, or “free beer”, but also free as in 
“free jazz”. The freedom of musical expression when 

utilising these tools is characteristic of their nature and 
important criteria their designers had in mind when 
designing the environments [11, 16]. Of course, one 
could argue that these audio programming languages are 
constraining as well, but this is more on the level of 
software design and rarely on the level of musical 
interaction. As such, the musician or instrument designer 
always has ways of getting around software engineering 
limitations to reach the goal of the composition or 
instrument design. 
 In this paper, I will introduce the ixiQuarks: a 
graphical user interface (GUI) environment of audio 
tools and instruments for live improvisation that allow 
for user interaction on both the GUI and the code level. 
The ixiQuarks are written in the SuperCollider 
programming language and are part of the Quarks 
repository (external libraries for the SuperCollider 
language). I will commence by outlining the general 
SuperCollider/Quarks environment, then introduce the 
ixiQuarks instruments and finally talk about the 
philosophical and aesthetic implications of this unified 
creative space where code and interface can merge in a 
continuous performance activity. 

2. SUPERCOLLIDER, QUARKS AND CODING 

2.1. The SuperCollider Environment 

SuperCollider 3 (or SC Server) [11] is the state-of-the-art 
audio programming environment of today, written by 
James McCartney and released as open source software 
in 2002. Since then it has become ever more 
sophisticated and powerful, used by musicians, artists 
and scientists alike that form a strong developer and user 
community. SuperCollider is split up in two independent 
parts, the SC language and the SC server. The former is 
an interpreted, object orientated language written in 
C/C++ that takes inspiration from the design of 
SmallTalk; the latter is an audio server that supports a 
powerful C plugin architecture which makes audio 
digital signal processing effective, fast and easy to 
program. The language and the server communicate 
through the Open Sound Control (OSC) protocol [17], 
which makes it possible for all OSC supporting 
programming languages to talk to the SC server. This 
split between a language and a server, and the usage of 
OSC makes SuperCollider an ideal audio programming 
environment for networked performances, live-coding, 
interface creation (hardware or software) and 
collaborative playing. It also means that the language 
can perform complex real-time calculations without 



  
 
resulting in glitches in the audio as they are two separate 
processes. 
 The SuperCollider language and server are open 
source and anyone can write class extensions for the 
language or plugins (unit generators) for the server. The 
environment is compiled into a binary file (the 
distributed application) with a C compiler, but then runs 
as an interpreted language that has source class files that 
interface with the C primitives. The SuperCollider class 
files are written in the SC-language and are an important 
way to modularize code and compositional concepts 
when working with the language. SuperCollider itself is 
an extremely broad and flexible language and easily 
extendable by writing one’s own classes. 

2.2. Quarks 

Authors of 3rd party SuperCollider classes tend to share 
them with the rest of the community if they have a 
general scope and are useful in other than a private 
capacity. In order to extend SuperCollider with new 
classes, users can either install them manually into the 
appropriate ClassLib folder or use the dynamic Quarks 
system. The Quarks system was introduced for the 
creators of 3rd party class files to simplify the process of 
creating, updating and distributing their code but also 
simplifying the updating channel for the users of the 
classes. This is achieved by using a SVN1 (Subversion 
Control) repository system where the author commits the 
latest changes in his/her classes and then the users can 
update their classes with a simple two line command: 

Quarks.checkout( "ixiQuarks" );  // downloads from svn 
Quarks.install( "ixiQuarks" );  // installs in sc-classpath 

The repository is online on the SourceForge website and 
the Quarks class in SuperCollider takes care of 
downloading and installing the chosen classes “under the 
hood” so to speak. The user only needs the two lines 
above to download new class libraries. The SVN system 
makes it easy for the author to track changes in the code, 
but also for the user to follow development of the class. 

2.3. Programming and Live Coding with SC 

One of the frustrations for the computer musician who 
performs in a live situation with acoustic 
instrumentalists, for example in an improvisation band, 
is the difficulty of carrying out spontaneous and intuitive 
change in playing  [10]. Musical software is often more 
focused on the score or the textural level of a musical 
performance rather than on the note level. This fact tends 
to make software instruments less expressive than their 
acoustic counterparts. But there are various ways to get 
around the rigidity of musical software.  One solution is 
the field represented by the new musical interface 
research2 but another approach is live-coding where the 
instrument/music is created and modified as a 
performance act. 
                                                             
1 http://sourceforge.net/docs/E09 
2 http://www.nime.org 

SuperCollider has extensive support for creating 
interfaces on the graphical user interface level, using 
MIDI, HID (Human Interface Devices), serial or OSC 
(Open Sound Control) communication. As such it lends 
itself well to all common interface work, instrument 
making and installations. But SuperCollider is also one 
of the most powerful environments for live-coding 
musical performances [12, 13] as it is an interpreted 
language and new code can be evaluated in run-time 
without saving or recompiling anything. Programs can 
be created that evolve or change according to user input 
or additional programming. As an example, here is a 
small JITLib [13] program that generates a simple snare 
sound every second: 
~trig = { Impulse.ar(1) }; // the trigger 
~snare = { WhiteNoise.ar(1) * EnvGen.ar( Env.perc, ~trig.ar )}; 

Say we wanted to add a low pass filter to the sound 
without interrupting its continuity, we simply run the 
latter line again where the white noise goes through the 
filter: 
~snare={LPF.ar(WhiteNoise.ar * EnvGen.ar(Env.perc,~trig.ar), 2000)}; 

There are countless ways of doing these things in 
SuperCollider as it is a wide and powerful programming 
language whose users have different agenda, emphasis 
and programming styles. Some people prefer writing 
classes and/or graphical user interfaces to be controlled 
by sensors or controllers. Others work purely in code 
composing algorithmic music and yet others enjoy the 
tense experience of coding in front of the audience in a 
live situation.3 In contrast to much closed source 
software, there are as many ways of using SuperCollider 
as there are people working with it. There is no rigid 
methodology as all programmers/musicians have their 
own way of thinking; their own style of writing 
code/music. 

3. THE IXI QUARKS 

The ixi software4 project started in 2000 as an 
exploration of how structures of interaction in musical 
software could be redefined. The aim was to resist the 
imitation of physical hardware or acoustic instruments in 
the way the interaction and interface design was 
implemented. The ixi instruments are designed from the 
affordances and premises of the computer itself and not 
those of physical reality. As music is in essence the 
execution of sonic patterns through time, we 
concentrated on creating pattern-generating interfaces 
with strong graphical elements implemented in the 
interaction design. These interfaces were outputting OSC 
information to sound engines that were written in 
SuperCollider, Pure Data or Max/MSP, but some also 
included closed sound engines [9].  
 Recently the interface support of SuperCollider 
has matured to the level that interfaces in the style of ixi 
software can easily be built with the SuperCollider 

                                                             
3 See the TOPLAP manifesto - http://www.toplap.org/ 
4 http://www.ixi-audio.net 



  
 
language itself.5 As SuperCollider is the programming 
language of choice for the current author, it became 
more natural to write the interfaces in SuperCollider 
itself, rather than in Python or Java as we had been doing 
before. The interfaces are still OSC controllers that can 
be used with other sound engines as well but they are 
streamlined for use with the SC audio server. 

3.1. The ixiQuarks Environment 

SuperCollider is an open and dynamic environment that 
allows for running many programs simultaneously, using 
any number of groups, nodes and audio busses.  Any 
process can be started, paused, stopped or freed without 
interfering with other processes that are also running in 
the environment. The ixiQuarks toolbox is a collection 
of tools that perform various tasks that could be time-
consuming to code up in a live/improv situation, but 
easily accessed from a GUI window that contains a list 
of all the ixiQuarks. The ixiQuarks don’t need to be used 
exclusively as an independent environment, but can be 
used with any other program written in SuperCollider. 
As an example one could imagine a performer that is 
running some process using the Pattern classes, suddenly 
deciding to add reverb to the output. In this case it is 
trivial to open a reverb ixiQuark and route the audio 
from the original process through the reverb program 
that has a simple GUI to control the basic parameters.  

 
Figure 1. Screenshot of some ixiQuarks utilities 

The ixiQuarks is a modular environment that consists of 
three different types of tools: basic utilities, audio effects 
and instruments. The environment is built around audio 
busses that can be used to patch audio streams into one 
another. An audio bus can contain the output of many 
sound-generating processes. Here below, I will explain 
briefly the first two types and then focus on the main 
research-topic of this paper, the instruments. 

3.2. Basic Utilities 

The basic utilities are tools such as AudioIn, Recorders 
(of any audio channel), BufferPools (that stores sound 
buffers in RAM), Players (streaming soundfiles from the 
                                                             
5 What was needed was a class that detected mouse 
movements, drawing functionality and hardware 
interfacing. 

hard disk), NodeMixers, and various scopes for viewing 
the audio (such as an EQMeter, FreqScope, an adaption 
of Lance Putnam’s FreqScope, WaveScope, etc.) These 
are general utilities that are needed to set up an 
environment very quickly. The design idea is to let the 
instruments make use of these utilities rather than 
integrating them into the instruments themselves. That 
would create unnecessary complexity and be against the 
modular design philosophy of the environment. 

3.3. Audio Effects 

The audio effects are the typical effects known from 
most sound editors: delay, reverb, distortion, 
compression, chorus, flanger, tremolo, equalizer, 
vocoder, randompanner, and some strange effects such 
as MrRoque (which is an effect that records incoming 
sound with reverb and succinctly plays it backwards, 
also through a reverb). The effects run on the audio 
channels and can be turned on and off as one wishes. 
The user can plug many effects onto the same channel or 
route the sound through one effect into the next on 
another channel. 

 
Figure 2. Screenshot of a typical ixiQuarks effect 

3.4. Instruments 

The ixiQuarks environment is designed for the building 
of instruments that make use of other ixiQuarks such as 
the utility tools or the audio effects. At the point of 
writing there are 9 different instruments available with 
more in the pipeline, and users can easily write their own 
instruments that work seamlessly in the environment. In 
general these instruments are pattern-generators that 
allow for sample manipulation, synthesis and live 
coding. Below I explain five of them. 

3.4.1. The SoundScratcher 

The SoundScratcher is an instrument that represents the 
waveform of a sample buffer in a graphical display. Any 
buffer stored in the RAM memory can be manipulated 
by the instrument. The instrument receives input from 
hardware such as the mouse or a Wacom tablet and the 
basic idea is that the user can draw on top of the 



  
 
waveform representation and control the playback of the 
sound that way. 

There are various interactive modes in which 
the user can play with the sound: warp – a granular 
synthesis where the location in the sound file is played 
constantly using overlapping soundgrains. Here the 
vertical location of the cursor represents the pitch; 
scratch – by moving the pen (or some other sensor input) 
the user can scratch the buffer forwards and backwards 
like a needle on a turntable. In the spirit of turntables, the 
speed of the gestural movement maps naturally to the 
pitch; random grains – here grains are represented as 
dots on the canvas. The sound engine reads randomly 
though an array of the locations of those dots, creating a 
granular cloud. The density of the cloud, the envelope 
length and envelope type of each grain can be controlled 
from the interface; linear grains – same functionality as 
in random grains, but here the sound engine reads 
linearly through the list of grains. However, there is a 
randomising button on the left of the interface where the 
users can randomise the list if they so wish; worm – the 
worm is a creature that moves over the space of the 
sound with variable numbers of grains in its spine. The 
speed of the worm and the grain duration can be 
controlled; graincircles – these are circles of variable 
size and amplitude (represented as alpha in colour) 
inside which the sound engine spawns grains according 
to the set speed. Again the envelope and duration of the 
grain can be controlled; grainsquares – as opposed to the 
graincircles the squares always play the grains from the 
left point of its location. This makes it easier to create 
interesting rhythms and periodic sound textures than in 
the random space of the circles. The speed of the grain 
repetition can be affected in both the graincircles and the 
grainsquares by pressing the 1, 2, 3, or 4 number keys, 
representing the respective time relationships (3 against 
2 or 4 against 3, etc.)  

 
Figure 3. Screenshot of the SoundScratcher instrument 

 The gestural movements of the user can be 
recorded, stored and played back by the instrument itself. 
That way the user can draw patterns on the instrument 
and leave it to perform on its own. The user could then 
for example open up another instance of Soundscratcher 
to perform with. 

3.4.2. The Gridder 

The Gridder is an instrument that focuses on micro-
tonality in various ways. It consists of a scaleable grid of 
nodes (from 5 to 48 squared) which is mapped in equal 

temperament (implementing the formula fundamental * 
2.pow(i/steps_per_octave)) in octaves (one octave per 
horizontal line) but wrapping at a set ceiling frequency.  

Like SoundScratcher, the Gridder is a broad 
conceptual environment on its own that affords various 
interaction modalities. We could divide the analysis of 
the instrument into two parts: the environmental part – 
where we look at the acoustic properties of the 
instrument; and the interaction part – where we focus on 
how the instrument can be controlled. 

 
Figure 4. Screenshot of the Gridder in 12-tET tuning 

Looking at the environmental properties of the 
instrument, the most important part is the definition of 
the pitch resolution in an octave. The grid can be scaled 
from a 5-tET scale to 48-tET scale. (5-tET = 5 tone equal 
tempered tuning). Each node on the grid is a note in the 
scale. The horizontal axis represents the N notes in the 
octave and the vertical axis is the next pitch range, by 
default an octave above, but it could be the fundamental 
scale transposed by a 3rd, a 5th or any other relation. 
There is a setting that controls maximum frequency on 
the vertical axis forcing the scale to wrap back to the 
fundamental note when the ceiling is reached. The user 
can define scales in any of the pitch resolutions by 
drawing vertical lines as represented by the columns of 
boxes in Figure 4 and these can be stored in a dictionary. 
There are 8 different types of synthesized sound that can 
be selected, and the user can also write his/her own 
synthesis using code in a special coding window. The 
nodes can also contain sound samples that are triggered 
when the node is activated. The piano keyboard view is 
optional and not graphically connected to the grid itself 
in any way. It shows the notes played, indicated with 
grey if the pitch maps to the western 12-tone scale but 
red if it is a microtone. 
 The interactive attributes (related to playing) of 
the instrument consist of a space where one can play 
scales or notes with the mouse, the Wacom pen or any 
other interface. There are two types of playing: free 
playing, where the player can play any note on the grid; 



  
 
and restricted playing, where only the selected notes can 
be played. That way the instrument can be played as a 
customly tuned string instrument. Related projects are 
Spiegel and Hunt [5, 14]. The interface also contains 4 
agents that can move through the grid-space, each with 
its own tempo and step size properties. If the agent lands 
on a selected node, it triggers the assigned action 
(playing a synthesised note or triggering a sample). The 
agents also have a mode where they breed notes (by 
selecting it) if they mate.  

3.4.3. The Predators 

The Predators is an artificial life (ALife) instrument 
where predators and preys are left to interact in a neutral 
environment. The idea behind the instrument was to 
create a non-linear note or sample player; one that was 
controlled by the properties of an ALife system rather 
than random number generators. 

 
Figure 5. Screenshot of the Predators instrument 

The predators have properties like energy, speed, 
restlessness, friction and focus on a prey. They loose 
energy by not eating from the preys or by fighting about 
them. When a predator takes a bite of the prey, it emits a 
sound. The sound is either synthesized sound or samples 
from the buffer pool. The pitch of the sound is defined 
either by the vertical location of the prey or by assigning 
a special pitch to the prey by choosing a note from a 
keyboard that pops up. Of course, preys and predators 
can be added to or removed from the environment. The 
ALife properties of this instrument are rather simple. We 
could have added things like environmental obstacles, 
age, death, reproduction, etc. but we did not find that it 
would serve any musical purpose in this simple 
instrument. 

3.4.4. The PolyMachine 

The PolyMachine is a polyrhythmic pattern sequencer 
that implements four different TempoClocks controlling 
each channel. The instrument originates from a study of 

Indian talas but turned into a parody of the typical drum 
sequencer.  

 
Figure 6. Screenshot of the PolyMachine instrument 

The PolyMachine consists of 4 tracks where the number 
of steps in each track can be defined individually. One 
can view the instrument either with a fixed box-size 
where the GUI window grows in size (Figure 6) or a 
relative box-size where the tracks adjust to the size of the 
window (Figure 7). Both modes have different qualities 
to them and it can be interesting to study the conceptual 
understanding of time and rhythm in the different 
representational modes. 

 
Figure 7. Same as Figure 6 but different view mode 

Each track has a time indicator that travels above the 
sequence line and triggers an event if the box is selected. 
The event can be triggering of a sound sample or any 
function that SuperCollider can evaluate, such as sound 
synthesis or sending OSC or MIDI messages to other 
environments or applications. The tracks have volume 
control and an envelope generator. 

3.4.5. The GrainBox 

The GrainBox is a two dimensional parameter space for 
granular synthesis. The problem with granular synthesis 
is often how to represent it graphically at the interface 
level as there are so many parameters involved. Here we 
represent the parameters with coloured boxes in a two 
dimensional space where boxes with related parameters 
are connected with lines. This makes it easy for the 
musician to intuitively understand the state of the sound 
engine by quickly glancing at the interface, as opposed 
to the complex analysis of slider positions where one has 
to read the label of each slider. 

 
Figure 8. Screenshot of the GrainBox instrument 



  
 
The audio stream of the GrainBox can be output on any 
audio bus and used as the source sound fed into and 
controlled by other instruments such as PolyMachine, 
Gridder or Predators. This way, the sound can be directly 
adjusted from the GrainBox application but utilised by 
the other pattern generating instruments that wrap the 
sound in an envelope. Of course, the GrainBox can also 
be used independently as sound texture generator. 

4. EPISTEMIC TOOLS 

Something in the world forces us to think. This 
something is an object not of recognition but of a 
fundamental encounter. [3] 

4.1. The Fundamental Encounter 

A fundamental encounter with an object is not something 
that reinforces our identity or habits. Quite the opposite, 
it ruptures the stabilised habits of the self. From this 
perspective, it can be useful to ask: what is the process of 
encountering an instrument or a tool for the first time? 
Does the instrument change the musical ideas of the user 
or reaffirm them? The first encounter with a music 
software and the process getting an understanding of it is 
essentially a hermeneutic process. It involves at least two 
mental models of musical theory – that of the designer 
and that of the user – where it is the user’s task to mould 
his/her model to the functionality of the software. As the 
software itself is an artefact on a much more complex 
and conceptual scale than an acoustic instrument, the 
process concerns a circular (as in Gadamer’s 
hermeneutic circle [4]) interpretation of the meaning of 
the system. This meaning can be modified (or “hacked”) 
and appropriated to one’s own work methods and 
musical aesthetics, but in general we could say that the 
software defines the musician through its interface. 

Now, how do the ixiQuarks instruments relate 
to the mental models the user has about how musical 
software should look and work? They might not relate in 
any way to such models. These instruments are 
eccentric, limited and focused on certain tasks, unlike 
much music software that tries unsuccessfully to attain 
generality in design. We are interested in constrained 
tools that focus on certain tasks, are easy to learn, but 
still provide scope for in-depth study and mastery. The 
ixiQuarks do hardly relate to any acoustic musical 
instrument or hardware, but their design does not arise 
from a vacuum. The design metaphors and interaction 
models are inspired by computer games and multimedia 
design on the one hand, but physical actions (such as 
scratching or drawing) on the other. The user does not 
necessarily find the software alien to his/her thought, as 
it connects into prior experiences with digital 
technologies or physical actions. 

In musical software, there exists a continuum 
from a narrow scope (where the software is a clear 
personal expression by its author - perhaps allowing for 
some user interaction) to a wide scope where the tool has 
few restrictions and allows its users to express 
themselves more freely (see Figure 9). A rule of thumb 

is that the wider the environment is, the more the user 
has to invest time studying it and the longer it takes to 
design a composition or an instrument for their own 
needs. 

 
Figure 9. A non-scientific representation of the 
expressive constraints of musical software. To the right 
we have more freedom, requiring more investment. 

The ixiQuarks are limited and constraining instruments 
with focused functionality. They are intended for live, 
improvisational performance and to be played like 
acoustic instruments as part of an ensemble. The main 
criteria for their design is to enable the musician to 
respond quickly to structural changes in the music, to 
change directions and to be expressive by bodily 
gestures by extension via the supported joystick, tablet, 
mouse control, etc. However, the focus is not on the 
gestural part of the tools but on the cognitive or musical 
implications that a computational system for music 
always incorporates through its design: i.e. the epistemic 
nature of the tool. 

4.2. Epistemic Actions 

Andy Clark [2] has put forth a theory of external 
cognition, where he shows how our mind uses tools 
external to the body as part of the cognitive process. He 
uses the phrase “external scaffolding” to explain how we 
for example move Scrabble tiles around in their tray to 
form new words, rather than memorising the letters and 
representing the words internally in the mind. Another 
example is how we rotate the bricks in Tetris to see how 
they fit rather than thinking it through. In a 1994 paper, 
Kisch and Maglio [7] show how actions can be divided 
into epistemic actions and pragmatic actions. Epistemic 
actions are physical actions that make mental cognition 
faster and easier. In order to facilitate optimal cognition, 
intelligent agents adapt their environment to get the most 
out of their limited cognitive resources. The human 
being has developed its cognitive skills in a symbiotic 
relationship with its technology and continues to do so 
[1]. Epistemic tools constrain, direct and enable certain 
cognitive tasks on the individual level and on a more 
historical level we see how cultures produce, adapt and 
are effected by the technologies of epistemic action. 

Analogously to Tetris, musical software serves 
as external scaffolding for the composer. The interface 
both affords musical potential and stores musical 
parameters. It becomes the “locus” of the composition or 
the musical performance; an extension of the musician’s 
mind. The music theory is carved into the functionality 
of the software’s interface. The interface of a digital 
instrument becomes a cultural territory; a space where 



  
 
musical ideas can originate and take shape. It is a result 
of our musical culture and technology, but at the same 
time it actively influences the contemporary musical 
soundscape around us. This is not to deny that the 
acoustic instrument has specific affordances and lends 
itself to certain musical styles and playing, but more in 
order to point out how musical software normally 
resembles the score more than the instrument used to 
play the score and thus affects the musician on a more 
formal level. 

4.3. Software Tools as an Extension to the Mind  

The digital interface/instrument and the musician can be 
seen as one coupled system; one cognitive feedback 
loop. The musician offloads some of his/her cognitive 
activities onto the interface that in turn affects and 
influences their thinking with its interactive affordances.  
 In her work on semiotic engineering, De Souza 
[15] defines “intellectual artefacts” as tools that encode a 
particular understanding or interpretation of a problem 
situation, but also a set of solutions to that problem 
situation.6 This encoding is fundamentally semiotic. 
Both the user and the designer have to share 
understanding in the same semiotic system. This shared 
understanding can only be achieved through a 
hermeneutic process where the conceptual or mental 
model of the user adapts to the model of the designer. In 
this process the user will inevitably change his/her 
musical ideas according to the affordances of the 
instrument itself. We have labelled this dynamic 
elsewhere [9] as a “dual semiotic stance” with reference 
to Jakobson’s model of communication [6]. Figure 10 is 
a representation of Jakobson’s model, where on the left 
we have a representation of the instrument as a semiotic 
system, but on the right we view the music itself as the 
meaning conveying medium. 

 
Figure 10. A representation of the dual semiotic stance 

Semiotic theory explains all systems essentially as sign 
systems that convey specific meanings. The instrument 
maker should be aware of his or her position in affecting 
the musical ideas of the users (and to see how western 
synthesizers, hardware and software is musically limited 
for some other cultures. Just consider Indian and Arabic 
musicians’ use of the pitch-wheel when playing 
synthesizers) and be honest about the limitations of the 
instruments. As De Souza points out, there is an 
obligation for the designers to communicate properly the 
mental model that serves as the foundation for the design 
                                                             
6 Ironically, the “problem situation” we are talking about 
is that of creating music. 

decisions that took place in creating the particular 
software.  

4.4. The ixiQuarks as Epistemic Tools 

The instruments of the ixiQuarks software suite contain 
active, affecting, adaptive and automatic elements of 
various degrees. The musician “offloads” [1] some of 
his/her cognitive functions to the instrument itself that 
continues playing or influencing the music in its own 
way. The tool either represents a mechanism too 
convoluted to keep in mind at any one time or activities 
too complex to perform with a bodily performance. The 
ixiQuark instruments are limited to a specific design idea 
but the user is still provided with the power to extend the 
functionality of the instruments by coding extensions to 
it or creating new synthesis algorithms for it to use.  
 A recent survey we conducted [10] has shown 
that people find the limitations of acoustic instruments 
fascinating and enjoyable, leading to mastery of the tool 
and affecting the relationship to it. On the other hand, the 
survey also showed that people often found that the 
problems of acoustic instruments are that they were hard 
to change and playing them was a cliché-prone activity. 
In a special part of the survey we stepped out of its 
general focus and asked questions about ixi software in 
particular. From those who answered that section, we 
learned that the concerns were the same, i.e. that people 
found joy in the limitations of the instruments and in 
exploring their scope and expressive depth. However, 
many reported that after a while they missed the option 
of being able to extend the instrument and get it to work 
with other software in a more complex setup. We believe 
that with the ixiQuarks, and the merging of code and 
GUI in one epistemic tool, we have addressed these 
questions in one possible way; a way that has served 
ourselves well in our live improvisations with acoustic 
instrumentalists where quick response, fast changes and 
liveliness are common traits of the performance.  

5. CONCLUSION 

An interface is essentially an abstraction. It is a higher 
level representation of a structure of further complexity. 
As such, all efforts to build tools with interfaces are a 
process of limiting the scope of expression. We can 
distinguish two types of interfaces in musical 
performance with digital instruments: physical and 
virtual interfaces. Here we have focused on the virtual 
interface as the conceptual engine of the instrument, the 
location where parameters of the epistemic tool are set 
and controlled. This applies in all situations, whether the 
instrument is controlled by complex gestural sensors or 
the typical mouse and keyboard interface. 

The concept of the interface as limitation does 
apply to both graphical user interfaces and programming 
languages. The classes of a programming language are 
essentially interfaces for potential functionality. It is 
therefore already a limitation, but from a musical 
perspective (as opposed to software engineering), it is 
probably the least limited and constrained environment 



  
 
available today. We have seen here how an interface is a 
conceputalization of an action of epistemic nature; a 
semiotic design that invariably defines the possibilities 
in thinking and performing whilst using the tool. 
 The ixiQuarks presented here are constrained 
ideological instruments, designed for specific 
expression. The aim is not that of musical generality, but 
rather a focus on particular interactive patterns. 
However, this happens in a context where anything can 
be added or built as satellites to the instruments either as 
part of the ixiQuarks or simply by live-coding it in real-
time in a performance. 
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