

THE IXIQUARKS: MERGING CODE AND GUI
IN ONE CREATIVE SPACE

 Thor Magnusson
 ixi software

Creative Systems Lab
Department of Informatics

University of Sussex

ABSTRACT

This paper reports on ixiQuarks; an environment of
instruments and effects that is built on top of the audio
programming language SuperCollider. The rationale of
these instruments is to explore alternative ways of
designing musical interaction in screen-based software,
and investigate how semiotics in interface design affects
the musical output. The ixiQuarks are part of external
libraries available to SuperCollider through the Quarks
system. They are software instruments based on a non-
realist design ideology that rejects the simulation of
acoustic instruments or music hardware and focuses on
experimentation at the level of musical interaction. In
this environment we try to merge the graphical with the
textual in the same instruments, allowing the user to
reprogram and change parts of them in runtime. After a
short introduction to SuperCollider and the Quark
system, we will describe the ixiQuarks and the
philosophical basis of their design. We conclude by
looking at how they can be seen as epistemic tools that
influence the musician in a complex hermeneutic circle
of interpretation and signification.

1. INTRODUCTION

The question of affordances and constraints in musical
software [8] is highly interesting as it is inevitably
concerned with aesthetics and musicology. As all
musicians who have worked with digital software know,
the software itself suggests certain work methods,
outlining a methodology to be followed. Often this
means that the musicians have to change their natural
ways of composing or playing and subscribe to work
patterns that were defined by the designers of the
software [10]. Musical software comes in various forms
and includes both production and performance tools. The
difference of such software compared to a word editor, a
browser or a mail program is that the interaction design
of the software itself has much stronger aesthetic
implications for the user. Software is never neutral in its
expressive scope and the more refined it is, the more it
constrains.
 In order to escape from the expressive constraints
of commercial or closed source software, musicians are
increasingly making use of free and open source
programming environments such as SuperCollider,
ChucK, Pure Data and other similar patching
environments that allow for either textual or graphical
programming. The word “free” above connotes not only
free as in “free speech”, or “free beer”, but also free as in
“free jazz”. The freedom of musical expression when

utilising these tools is characteristic of their nature and
important criteria their designers had in mind when
designing the environments [11, 16]. Of course, one
could argue that these audio programming languages are
constraining as well, but this is more on the level of
software design and rarely on the level of musical
interaction. As such, the musician or instrument designer
always has ways of getting around software engineering
limitations to reach the goal of the composition or
instrument design.
 In this paper, I will introduce the ixiQuarks: a
graphical user interface (GUI) environment of audio
tools and instruments for live improvisation that allow
for user interaction on both the GUI and the code level.
The ixiQuarks are written in the SuperCollider
programming language and are part of the Quarks
repository (external libraries for the SuperCollider
language). I will commence by outlining the general
SuperCollider/Quarks environment, then introduce the
ixiQuarks instruments and finally talk about the
philosophical and aesthetic implications of this unified
creative space where code and interface can merge in a
continuous performance activity.

2. SUPERCOLLIDER, QUARKS AND CODING

2.1. The SuperCollider Environment

SuperCollider 3 (or SC Server) [11] is the state-of-the-art
audio programming environment of today, written by
James McCartney and released as open source software
in 2002. Since then it has become ever more
sophisticated and powerful, used by musicians, artists
and scientists alike that form a strong developer and user
community. SuperCollider is split up in two independent
parts, the SC language and the SC server. The former is
an interpreted, object orientated language written in
C/C++ that takes inspiration from the design of
SmallTalk; the latter is an audio server that supports a
powerful C plugin architecture which makes audio
digital signal processing effective, fast and easy to
program. The language and the server communicate
through the Open Sound Control (OSC) protocol [17],
which makes it possible for all OSC supporting
programming languages to talk to the SC server. This
split between a language and a server, and the usage of
OSC makes SuperCollider an ideal audio programming
environment for networked performances, live-coding,
interface creation (hardware or software) and
collaborative playing. It also means that the language
can perform complex real-time calculations without

resulting in glitches in the audio as they are two separate
processes.
 The SuperCollider language and server are open
source and anyone can write class extensions for the
language or plugins (unit generators) for the server. The
environment is compiled into a binary file (the
distributed application) with a C compiler, but then runs
as an interpreted language that has source class files that
interface with the C primitives. The SuperCollider class
files are written in the SC-language and are an important
way to modularize code and compositional concepts
when working with the language. SuperCollider itself is
an extremely broad and flexible language and easily
extendable by writing one’s own classes.

2.2. Quarks

Authors of 3rd party SuperCollider classes tend to share
them with the rest of the community if they have a
general scope and are useful in other than a private
capacity. In order to extend SuperCollider with new
classes, users can either install them manually into the
appropriate ClassLib folder or use the dynamic Quarks
system. The Quarks system was introduced for the
creators of 3rd party class files to simplify the process of
creating, updating and distributing their code but also
simplifying the updating channel for the users of the
classes. This is achieved by using a SVN1 (Subversion
Control) repository system where the author commits the
latest changes in his/her classes and then the users can
update their classes with a simple two line command:

Quarks.checkout("ixiQuarks"); // downloads from svn
Quarks.install("ixiQuarks"); // installs in sc-classpath

The repository is online on the SourceForge website and
the Quarks class in SuperCollider takes care of
downloading and installing the chosen classes “under the
hood” so to speak. The user only needs the two lines
above to download new class libraries. The SVN system
makes it easy for the author to track changes in the code,
but also for the user to follow development of the class.

2.3. Programming and Live Coding with SC

One of the frustrations for the computer musician who
performs in a live situation with acoustic
instrumentalists, for example in an improvisation band,
is the difficulty of carrying out spontaneous and intuitive
change in playing [10]. Musical software is often more
focused on the score or the textural level of a musical
performance rather than on the note level. This fact tends
to make software instruments less expressive than their
acoustic counterparts. But there are various ways to get
around the rigidity of musical software. One solution is
the field represented by the new musical interface
research2 but another approach is live-coding where the
instrument/music is created and modified as a
performance act.

1 http://sourceforge.net/docs/E09
2 http://www.nime.org

SuperCollider has extensive support for creating
interfaces on the graphical user interface level, using
MIDI, HID (Human Interface Devices), serial or OSC
(Open Sound Control) communication. As such it lends
itself well to all common interface work, instrument
making and installations. But SuperCollider is also one
of the most powerful environments for live-coding
musical performances [12, 13] as it is an interpreted
language and new code can be evaluated in run-time
without saving or recompiling anything. Programs can
be created that evolve or change according to user input
or additional programming. As an example, here is a
small JITLib [13] program that generates a simple snare
sound every second:
~trig = { Impulse.ar(1) }; // the trigger
~snare = { WhiteNoise.ar(1) * EnvGen.ar(Env.perc, ~trig.ar)};

Say we wanted to add a low pass filter to the sound
without interrupting its continuity, we simply run the
latter line again where the white noise goes through the
filter:
~snare={LPF.ar(WhiteNoise.ar * EnvGen.ar(Env.perc,~trig.ar), 2000)};

There are countless ways of doing these things in
SuperCollider as it is a wide and powerful programming
language whose users have different agenda, emphasis
and programming styles. Some people prefer writing
classes and/or graphical user interfaces to be controlled
by sensors or controllers. Others work purely in code
composing algorithmic music and yet others enjoy the
tense experience of coding in front of the audience in a
live situation.3 In contrast to much closed source
software, there are as many ways of using SuperCollider
as there are people working with it. There is no rigid
methodology as all programmers/musicians have their
own way of thinking; their own style of writing
code/music.

3. THE IXI QUARKS

The ixi software4 project started in 2000 as an
exploration of how structures of interaction in musical
software could be redefined. The aim was to resist the
imitation of physical hardware or acoustic instruments in
the way the interaction and interface design was
implemented. The ixi instruments are designed from the
affordances and premises of the computer itself and not
those of physical reality. As music is in essence the
execution of sonic patterns through time, we
concentrated on creating pattern-generating interfaces
with strong graphical elements implemented in the
interaction design. These interfaces were outputting OSC
information to sound engines that were written in
SuperCollider, Pure Data or Max/MSP, but some also
included closed sound engines [9].
 Recently the interface support of SuperCollider
has matured to the level that interfaces in the style of ixi
software can easily be built with the SuperCollider

3 See the TOPLAP manifesto - http://www.toplap.org/
4 http://www.ixi-audio.net

language itself.5 As SuperCollider is the programming
language of choice for the current author, it became
more natural to write the interfaces in SuperCollider
itself, rather than in Python or Java as we had been doing
before. The interfaces are still OSC controllers that can
be used with other sound engines as well but they are
streamlined for use with the SC audio server.

3.1. The ixiQuarks Environment

SuperCollider is an open and dynamic environment that
allows for running many programs simultaneously, using
any number of groups, nodes and audio busses. Any
process can be started, paused, stopped or freed without
interfering with other processes that are also running in
the environment. The ixiQuarks toolbox is a collection
of tools that perform various tasks that could be time-
consuming to code up in a live/improv situation, but
easily accessed from a GUI window that contains a list
of all the ixiQuarks. The ixiQuarks don’t need to be used
exclusively as an independent environment, but can be
used with any other program written in SuperCollider.
As an example one could imagine a performer that is
running some process using the Pattern classes, suddenly
deciding to add reverb to the output. In this case it is
trivial to open a reverb ixiQuark and route the audio
from the original process through the reverb program
that has a simple GUI to control the basic parameters.

Figure 1. Screenshot of some ixiQuarks utilities

The ixiQuarks is a modular environment that consists of
three different types of tools: basic utilities, audio effects
and instruments. The environment is built around audio
busses that can be used to patch audio streams into one
another. An audio bus can contain the output of many
sound-generating processes. Here below, I will explain
briefly the first two types and then focus on the main
research-topic of this paper, the instruments.

3.2. Basic Utilities

The basic utilities are tools such as AudioIn, Recorders
(of any audio channel), BufferPools (that stores sound
buffers in RAM), Players (streaming soundfiles from the

5 What was needed was a class that detected mouse
movements, drawing functionality and hardware
interfacing.

hard disk), NodeMixers, and various scopes for viewing
the audio (such as an EQMeter, FreqScope, an adaption
of Lance Putnam’s FreqScope, WaveScope, etc.) These
are general utilities that are needed to set up an
environment very quickly. The design idea is to let the
instruments make use of these utilities rather than
integrating them into the instruments themselves. That
would create unnecessary complexity and be against the
modular design philosophy of the environment.

3.3. Audio Effects

The audio effects are the typical effects known from
most sound editors: delay, reverb, distortion,
compression, chorus, flanger, tremolo, equalizer,
vocoder, randompanner, and some strange effects such
as MrRoque (which is an effect that records incoming
sound with reverb and succinctly plays it backwards,
also through a reverb). The effects run on the audio
channels and can be turned on and off as one wishes.
The user can plug many effects onto the same channel or
route the sound through one effect into the next on
another channel.

Figure 2. Screenshot of a typical ixiQuarks effect

3.4. Instruments

The ixiQuarks environment is designed for the building
of instruments that make use of other ixiQuarks such as
the utility tools or the audio effects. At the point of
writing there are 9 different instruments available with
more in the pipeline, and users can easily write their own
instruments that work seamlessly in the environment. In
general these instruments are pattern-generators that
allow for sample manipulation, synthesis and live
coding. Below I explain five of them.

3.4.1. The SoundScratcher

The SoundScratcher is an instrument that represents the
waveform of a sample buffer in a graphical display. Any
buffer stored in the RAM memory can be manipulated
by the instrument. The instrument receives input from
hardware such as the mouse or a Wacom tablet and the
basic idea is that the user can draw on top of the

waveform representation and control the playback of the
sound that way.

There are various interactive modes in which
the user can play with the sound: warp – a granular
synthesis where the location in the sound file is played
constantly using overlapping soundgrains. Here the
vertical location of the cursor represents the pitch;
scratch – by moving the pen (or some other sensor input)
the user can scratch the buffer forwards and backwards
like a needle on a turntable. In the spirit of turntables, the
speed of the gestural movement maps naturally to the
pitch; random grains – here grains are represented as
dots on the canvas. The sound engine reads randomly
though an array of the locations of those dots, creating a
granular cloud. The density of the cloud, the envelope
length and envelope type of each grain can be controlled
from the interface; linear grains – same functionality as
in random grains, but here the sound engine reads
linearly through the list of grains. However, there is a
randomising button on the left of the interface where the
users can randomise the list if they so wish; worm – the
worm is a creature that moves over the space of the
sound with variable numbers of grains in its spine. The
speed of the worm and the grain duration can be
controlled; graincircles – these are circles of variable
size and amplitude (represented as alpha in colour)
inside which the sound engine spawns grains according
to the set speed. Again the envelope and duration of the
grain can be controlled; grainsquares – as opposed to the
graincircles the squares always play the grains from the
left point of its location. This makes it easier to create
interesting rhythms and periodic sound textures than in
the random space of the circles. The speed of the grain
repetition can be affected in both the graincircles and the
grainsquares by pressing the 1, 2, 3, or 4 number keys,
representing the respective time relationships (3 against
2 or 4 against 3, etc.)

Figure 3. Screenshot of the SoundScratcher instrument

 The gestural movements of the user can be
recorded, stored and played back by the instrument itself.
That way the user can draw patterns on the instrument
and leave it to perform on its own. The user could then
for example open up another instance of Soundscratcher
to perform with.

3.4.2. The Gridder

The Gridder is an instrument that focuses on micro-
tonality in various ways. It consists of a scaleable grid of
nodes (from 5 to 48 squared) which is mapped in equal

temperament (implementing the formula fundamental *
2.pow(i/steps_per_octave)) in octaves (one octave per
horizontal line) but wrapping at a set ceiling frequency.

Like SoundScratcher, the Gridder is a broad
conceptual environment on its own that affords various
interaction modalities. We could divide the analysis of
the instrument into two parts: the environmental part –
where we look at the acoustic properties of the
instrument; and the interaction part – where we focus on
how the instrument can be controlled.

Figure 4. Screenshot of the Gridder in 12-tET tuning

Looking at the environmental properties of the
instrument, the most important part is the definition of
the pitch resolution in an octave. The grid can be scaled
from a 5-tET scale to 48-tET scale. (5-tET = 5 tone equal
tempered tuning). Each node on the grid is a note in the
scale. The horizontal axis represents the N notes in the
octave and the vertical axis is the next pitch range, by
default an octave above, but it could be the fundamental
scale transposed by a 3rd, a 5th or any other relation.
There is a setting that controls maximum frequency on
the vertical axis forcing the scale to wrap back to the
fundamental note when the ceiling is reached. The user
can define scales in any of the pitch resolutions by
drawing vertical lines as represented by the columns of
boxes in Figure 4 and these can be stored in a dictionary.
There are 8 different types of synthesized sound that can
be selected, and the user can also write his/her own
synthesis using code in a special coding window. The
nodes can also contain sound samples that are triggered
when the node is activated. The piano keyboard view is
optional and not graphically connected to the grid itself
in any way. It shows the notes played, indicated with
grey if the pitch maps to the western 12-tone scale but
red if it is a microtone.
 The interactive attributes (related to playing) of
the instrument consist of a space where one can play
scales or notes with the mouse, the Wacom pen or any
other interface. There are two types of playing: free
playing, where the player can play any note on the grid;

and restricted playing, where only the selected notes can
be played. That way the instrument can be played as a
customly tuned string instrument. Related projects are
Spiegel and Hunt [5, 14]. The interface also contains 4
agents that can move through the grid-space, each with
its own tempo and step size properties. If the agent lands
on a selected node, it triggers the assigned action
(playing a synthesised note or triggering a sample). The
agents also have a mode where they breed notes (by
selecting it) if they mate.

3.4.3. The Predators

The Predators is an artificial life (ALife) instrument
where predators and preys are left to interact in a neutral
environment. The idea behind the instrument was to
create a non-linear note or sample player; one that was
controlled by the properties of an ALife system rather
than random number generators.

Figure 5. Screenshot of the Predators instrument

The predators have properties like energy, speed,
restlessness, friction and focus on a prey. They loose
energy by not eating from the preys or by fighting about
them. When a predator takes a bite of the prey, it emits a
sound. The sound is either synthesized sound or samples
from the buffer pool. The pitch of the sound is defined
either by the vertical location of the prey or by assigning
a special pitch to the prey by choosing a note from a
keyboard that pops up. Of course, preys and predators
can be added to or removed from the environment. The
ALife properties of this instrument are rather simple. We
could have added things like environmental obstacles,
age, death, reproduction, etc. but we did not find that it
would serve any musical purpose in this simple
instrument.

3.4.4. The PolyMachine

The PolyMachine is a polyrhythmic pattern sequencer
that implements four different TempoClocks controlling
each channel. The instrument originates from a study of

Indian talas but turned into a parody of the typical drum
sequencer.

Figure 6. Screenshot of the PolyMachine instrument

The PolyMachine consists of 4 tracks where the number
of steps in each track can be defined individually. One
can view the instrument either with a fixed box-size
where the GUI window grows in size (Figure 6) or a
relative box-size where the tracks adjust to the size of the
window (Figure 7). Both modes have different qualities
to them and it can be interesting to study the conceptual
understanding of time and rhythm in the different
representational modes.

Figure 7. Same as Figure 6 but different view mode

Each track has a time indicator that travels above the
sequence line and triggers an event if the box is selected.
The event can be triggering of a sound sample or any
function that SuperCollider can evaluate, such as sound
synthesis or sending OSC or MIDI messages to other
environments or applications. The tracks have volume
control and an envelope generator.

3.4.5. The GrainBox

The GrainBox is a two dimensional parameter space for
granular synthesis. The problem with granular synthesis
is often how to represent it graphically at the interface
level as there are so many parameters involved. Here we
represent the parameters with coloured boxes in a two
dimensional space where boxes with related parameters
are connected with lines. This makes it easy for the
musician to intuitively understand the state of the sound
engine by quickly glancing at the interface, as opposed
to the complex analysis of slider positions where one has
to read the label of each slider.

Figure 8. Screenshot of the GrainBox instrument

The audio stream of the GrainBox can be output on any
audio bus and used as the source sound fed into and
controlled by other instruments such as PolyMachine,
Gridder or Predators. This way, the sound can be directly
adjusted from the GrainBox application but utilised by
the other pattern generating instruments that wrap the
sound in an envelope. Of course, the GrainBox can also
be used independently as sound texture generator.

4. EPISTEMIC TOOLS

Something in the world forces us to think. This
something is an object not of recognition but of a
fundamental encounter. [3]

4.1. The Fundamental Encounter

A fundamental encounter with an object is not something
that reinforces our identity or habits. Quite the opposite,
it ruptures the stabilised habits of the self. From this
perspective, it can be useful to ask: what is the process of
encountering an instrument or a tool for the first time?
Does the instrument change the musical ideas of the user
or reaffirm them? The first encounter with a music
software and the process getting an understanding of it is
essentially a hermeneutic process. It involves at least two
mental models of musical theory – that of the designer
and that of the user – where it is the user’s task to mould
his/her model to the functionality of the software. As the
software itself is an artefact on a much more complex
and conceptual scale than an acoustic instrument, the
process concerns a circular (as in Gadamer’s
hermeneutic circle [4]) interpretation of the meaning of
the system. This meaning can be modified (or “hacked”)
and appropriated to one’s own work methods and
musical aesthetics, but in general we could say that the
software defines the musician through its interface.

Now, how do the ixiQuarks instruments relate
to the mental models the user has about how musical
software should look and work? They might not relate in
any way to such models. These instruments are
eccentric, limited and focused on certain tasks, unlike
much music software that tries unsuccessfully to attain
generality in design. We are interested in constrained
tools that focus on certain tasks, are easy to learn, but
still provide scope for in-depth study and mastery. The
ixiQuarks do hardly relate to any acoustic musical
instrument or hardware, but their design does not arise
from a vacuum. The design metaphors and interaction
models are inspired by computer games and multimedia
design on the one hand, but physical actions (such as
scratching or drawing) on the other. The user does not
necessarily find the software alien to his/her thought, as
it connects into prior experiences with digital
technologies or physical actions.

In musical software, there exists a continuum
from a narrow scope (where the software is a clear
personal expression by its author - perhaps allowing for
some user interaction) to a wide scope where the tool has
few restrictions and allows its users to express
themselves more freely (see Figure 9). A rule of thumb

is that the wider the environment is, the more the user
has to invest time studying it and the longer it takes to
design a composition or an instrument for their own
needs.

Figure 9. A non-scientific representation of the
expressive constraints of musical software. To the right
we have more freedom, requiring more investment.

The ixiQuarks are limited and constraining instruments
with focused functionality. They are intended for live,
improvisational performance and to be played like
acoustic instruments as part of an ensemble. The main
criteria for their design is to enable the musician to
respond quickly to structural changes in the music, to
change directions and to be expressive by bodily
gestures by extension via the supported joystick, tablet,
mouse control, etc. However, the focus is not on the
gestural part of the tools but on the cognitive or musical
implications that a computational system for music
always incorporates through its design: i.e. the epistemic
nature of the tool.

4.2. Epistemic Actions

Andy Clark [2] has put forth a theory of external
cognition, where he shows how our mind uses tools
external to the body as part of the cognitive process. He
uses the phrase “external scaffolding” to explain how we
for example move Scrabble tiles around in their tray to
form new words, rather than memorising the letters and
representing the words internally in the mind. Another
example is how we rotate the bricks in Tetris to see how
they fit rather than thinking it through. In a 1994 paper,
Kisch and Maglio [7] show how actions can be divided
into epistemic actions and pragmatic actions. Epistemic
actions are physical actions that make mental cognition
faster and easier. In order to facilitate optimal cognition,
intelligent agents adapt their environment to get the most
out of their limited cognitive resources. The human
being has developed its cognitive skills in a symbiotic
relationship with its technology and continues to do so
[1]. Epistemic tools constrain, direct and enable certain
cognitive tasks on the individual level and on a more
historical level we see how cultures produce, adapt and
are effected by the technologies of epistemic action.

Analogously to Tetris, musical software serves
as external scaffolding for the composer. The interface
both affords musical potential and stores musical
parameters. It becomes the “locus” of the composition or
the musical performance; an extension of the musician’s
mind. The music theory is carved into the functionality
of the software’s interface. The interface of a digital
instrument becomes a cultural territory; a space where

musical ideas can originate and take shape. It is a result
of our musical culture and technology, but at the same
time it actively influences the contemporary musical
soundscape around us. This is not to deny that the
acoustic instrument has specific affordances and lends
itself to certain musical styles and playing, but more in
order to point out how musical software normally
resembles the score more than the instrument used to
play the score and thus affects the musician on a more
formal level.

4.3. Software Tools as an Extension to the Mind

The digital interface/instrument and the musician can be
seen as one coupled system; one cognitive feedback
loop. The musician offloads some of his/her cognitive
activities onto the interface that in turn affects and
influences their thinking with its interactive affordances.
 In her work on semiotic engineering, De Souza
[15] defines “intellectual artefacts” as tools that encode a
particular understanding or interpretation of a problem
situation, but also a set of solutions to that problem
situation.6 This encoding is fundamentally semiotic.
Both the user and the designer have to share
understanding in the same semiotic system. This shared
understanding can only be achieved through a
hermeneutic process where the conceptual or mental
model of the user adapts to the model of the designer. In
this process the user will inevitably change his/her
musical ideas according to the affordances of the
instrument itself. We have labelled this dynamic
elsewhere [9] as a “dual semiotic stance” with reference
to Jakobson’s model of communication [6]. Figure 10 is
a representation of Jakobson’s model, where on the left
we have a representation of the instrument as a semiotic
system, but on the right we view the music itself as the
meaning conveying medium.

Figure 10. A representation of the dual semiotic stance

Semiotic theory explains all systems essentially as sign
systems that convey specific meanings. The instrument
maker should be aware of his or her position in affecting
the musical ideas of the users (and to see how western
synthesizers, hardware and software is musically limited
for some other cultures. Just consider Indian and Arabic
musicians’ use of the pitch-wheel when playing
synthesizers) and be honest about the limitations of the
instruments. As De Souza points out, there is an
obligation for the designers to communicate properly the
mental model that serves as the foundation for the design

6 Ironically, the “problem situation” we are talking about
is that of creating music.

decisions that took place in creating the particular
software.

4.4. The ixiQuarks as Epistemic Tools

The instruments of the ixiQuarks software suite contain
active, affecting, adaptive and automatic elements of
various degrees. The musician “offloads” [1] some of
his/her cognitive functions to the instrument itself that
continues playing or influencing the music in its own
way. The tool either represents a mechanism too
convoluted to keep in mind at any one time or activities
too complex to perform with a bodily performance. The
ixiQuark instruments are limited to a specific design idea
but the user is still provided with the power to extend the
functionality of the instruments by coding extensions to
it or creating new synthesis algorithms for it to use.
 A recent survey we conducted [10] has shown
that people find the limitations of acoustic instruments
fascinating and enjoyable, leading to mastery of the tool
and affecting the relationship to it. On the other hand, the
survey also showed that people often found that the
problems of acoustic instruments are that they were hard
to change and playing them was a cliché-prone activity.
In a special part of the survey we stepped out of its
general focus and asked questions about ixi software in
particular. From those who answered that section, we
learned that the concerns were the same, i.e. that people
found joy in the limitations of the instruments and in
exploring their scope and expressive depth. However,
many reported that after a while they missed the option
of being able to extend the instrument and get it to work
with other software in a more complex setup. We believe
that with the ixiQuarks, and the merging of code and
GUI in one epistemic tool, we have addressed these
questions in one possible way; a way that has served
ourselves well in our live improvisations with acoustic
instrumentalists where quick response, fast changes and
liveliness are common traits of the performance.

5. CONCLUSION

An interface is essentially an abstraction. It is a higher
level representation of a structure of further complexity.
As such, all efforts to build tools with interfaces are a
process of limiting the scope of expression. We can
distinguish two types of interfaces in musical
performance with digital instruments: physical and
virtual interfaces. Here we have focused on the virtual
interface as the conceptual engine of the instrument, the
location where parameters of the epistemic tool are set
and controlled. This applies in all situations, whether the
instrument is controlled by complex gestural sensors or
the typical mouse and keyboard interface.

The concept of the interface as limitation does
apply to both graphical user interfaces and programming
languages. The classes of a programming language are
essentially interfaces for potential functionality. It is
therefore already a limitation, but from a musical
perspective (as opposed to software engineering), it is
probably the least limited and constrained environment

available today. We have seen here how an interface is a
conceputalization of an action of epistemic nature; a
semiotic design that invariably defines the possibilities
in thinking and performing whilst using the tool.
 The ixiQuarks presented here are constrained
ideological instruments, designed for specific
expression. The aim is not that of musical generality, but
rather a focus on particular interactive patterns.
However, this happens in a context where anything can
be added or built as satellites to the instruments either as
part of the ixiQuarks or simply by live-coding it in real-
time in a performance.

6. ACKNOWLEDGMENTS

The ixiQuarks have been written in the beautiful
programming environment SuperCollider. I want to
acknowledge the hard work of its developers and users
who make up a very helpful user community. I would
also like to thank my colleagues in ixi software for
constant inspiration, especially Enrike Hurtado
Mendieta. Tom Hall, Nick Collins and Chris Thornton
also provided invaluable feedback and discussions on the
ideas in this paper.

7. REFERENCES

[1] Clark, Andy. Natural-Born Cyborgs: Minds,
Technologies, and the Future of Human
Intelligence. Oxford: Oxford University Press,
2003.

[2] Clark, Andy & Chalmers, David. “The
Extended Mind” Analysis 58: 1: 1998.

[3] Deleuze, Gilles. Difference and Repetition.
New York: Columbia University Press, 1994.
p. 139.

[4] Gadamer, Hans-Georg. Truth and Method.
New York: Crossroad, 1989.

[5] Hunt, Andy & Kirk, Ross. “MidiGrid: Past,
Present and Future”. Proceedings of NIME
2006, Montreal: McGill University.

[6] Jacobson, Roman. “Closing statement:
linguistics and poetics” in Style in Language
(ed.) Sebeok. Cambridge: MIT Press, 1960.

[7] Kirsh, D. & Maglio, P. 1994. “On
distinguishing epistemic from pragmatic
action”. Cognitive Science. 18:513-49.

[8] Magnusson, Thor. “Affordances and
Constraints in Screen-Based Musical
Instruments” in Proceedings of the NordiCHI
Conference, Oslo: Oslo University, 2006.

[9] Magnusson, Thor. “Screen-Based Musical
Instruments as Semiotic-Machines” in
Proceedings of NIME 2006. Paris: IRCAM,
2006.

[10] Magnusson, Thor & Hurtado Mendieta, Enrike.
“The Acoustic, the Digital and the Body: A
Survey on Musical Instruments”, Proceedings
of the NIME Conference, New York, USA,
2007.

[11] McCartney, James. “Rethinking the Computer
Music Language: SuperCollider” in Computer
Music Journal, 26:4, pp. 61-68, Winter 2002.
MIT Press 2002.

[12] Nilson, Click. “Live Coding Practice” in
Proceedings of NIME 2007. New York: New
York University, 2007.

[13] Rohrhuber, Julian; Campo, Alberto de &
Wieser, R. “Algorithms today - notes on
language design for just in time programming”.
in Proceedings of International Computer
Music Conference. ICMC. Barcelona: Escola
Superior de Música de Catalunya, 2005.

[14] Spiegel, Lauri. “Music Mouse™ - An
Intelligent Instrument” Program and Manual:
http://tamw.atari-users.net/Atari_Music_Mouse
_Manual.pdf, 1993.

[15] Souza, Clarisse de. The Semiotic Engineering
of Human-Computer Interaction. Cambridge:
MIT Press, 2005. p. 10.

[16] Puckette, Miller. “Using PD as Score
Language” in Proceedings of the ICMC
Conference 2002. Pp. 184-187.

[17] Wright, Matt. “OpenSound Control: State of
the Art 2003.” in Proceedings of the NIME
Conference. Montreal: McGill. 2003.

